
Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Functions

COSC 123 – 2

Announcements
¥ Bonus Test 3 is this week!

¥ Content: Variables, Images, Conditionals

¥ Reminder of the Labs/Activities 8-11 deadline
¥ Will be due March 28th at 6 PM!
¥ Come see me in my student hours (or make an appointment with

me through Ed Discussion) if this will cause you problems ASAP so
we can come up with an alternate plan

¥ You must ALWAYS submit your pde files in your github repo and
make sure any gifs you want marked are NOT in the `images` or
the `animations` directories!

¥ After these slides, you should be able to:
¥ Recognize that functions are used to group statements that

perform a particular task so that they can be easily used
¥ Understand the difference between functions that return a value

and those that do not.
¥ Split your program into functions.
¥ Create and use functions.

COSC 123 – 4

Programming Incrementally
¥ NEVER write code in a monolithic fashion. Instead, ALWAYS

write code by adding only a few lines or features at a time and
then testing.

¥ Thus, coding is an incremental process.
¥ Write some code.
¥ Test. Fix errors.
¥ Repeat (until done).

¥ Problem decomposition involves breaking down a large
problem into subproblems which are easier to solve. Dividing
problems into subproblems is called divide and conquer.

COSC 123 – 5

Problem Decomposition
¥ Breaking down a problem into subproblem makes it easier to solve

the problem and also to track your code.
¥ Let’s consider the Space Invaders video game.

The steps inside the draw() method would be
something like this:

void draw(){
// Erase background.
// Move spaceship based on user input.
// Move enemies.
// Move other game items (bullets).
// Detect collisions between game items (e.g. bullets

and enemies) and update game status accordingly.
// Draw spaceship.
// Draw enemies.
// Draw bullets.

}

¥ Each one of the above steps requires many code lines. We can group
relevant code lines into named blocks, i.e. functions.

https://commons.wikimedia.org/wiki/File
:Space_Invaders_style.png

COSC 123 – 6

Problem Decomposition, cont’d
void draw() {
background(0);

moveSpaceship();
moveEnemies();
moveBullets();

detectCollisions();

drawSpaceship();
drawEnemies();
drawBullets();

}
https://commons.wikimedia.org/wiki/File
:Space_Invaders_style.png

void moveSpaceship(){
...

}

void moveEnemies(){
...

}

void drawBulltes(){
...

}

void moveBullets(){
...

}

...
void detectCollisions(){
...

}

COSC 123 – 7

Functions
¥ A function is a sequence of statements that performs a specific

action.
¥ Functions are also known as methods (in Java).

¥ Why do we create functions?
¥ 1) To organize code into blocks that have specific purpose.

n Each block of code is separated from other statements which makes it
easier to read and modify (more readability and maintainability).

n This makes the code more readable and easier to maintain
¥ 2) To avoid duplication by reusing code.

n The block of code can be called many times if the function needs to be
done multiple times.

¥ What is the alternative?
¥ Copy and paste and duplicate code. You will realize over time that

this is actually the harder way to do things.

COSC 123 – 8

Built-In and Custom Functions
Two groups of functions:

1. Built-in Functions come with Processing
¥ You have already used many built-in functions such as:

n Shape functions: rect(), line(), point(), …
n Vertex functions: vertex(), bezierVertex(), …
n Color functions: fill(), noFill(), stroke(), color(), …
n Image functions: image(), loadImage(),…
n etc

¥ A full list of built-in functions with their description can be found at
processing.org/reference

2. Custom functions
¥ Can be added to your program either by:

n 1) Creating them by yourself
n 2) Downloading them in function libraries.

n Useful libraries can be found at: processing.org/reference/libraries

COSC 123 – 9

Defining and Calling Functions
¥ Creating a function involves writing the statements in the

function and providing a function declaration with:
¥ a name (follows the same rules as identifiers)
¥ list of the inputs (called parameters) and their data types
¥ the output (return value) if any

¥ Calling (or executing) a function involves:
¥ providing the name of the function
¥ providing the values for all parameters (inputs) if any
¥ providing space (variable name) to store the output (if any)

COSC 123 – 10

Defining a Function

¥ Consider a method that converts a temperature in Celsius to
Fahrenheit:

float convertC2F(int tempInC){

return tempInC/5 * 9 + 32;

}

Function Declaration

Function
Identifier

Return
data Type

Parameter
Identifier & type

Keyword to
return a value

COSC 123 – 11

Example

Calling Convert Function

float myFTemp;

void draw() {

myFTemp = convertC2F(50);

print(myCTemp +"C is = "+myFTemp+"F");

noLoop();

}

float convertC2F(float tempInC) {

float f = tempInC / 5 * 9 + 32; //f=122

return f;

}

send value 50 to
convertC2F as you call it

50

send result = 122 back
to draw when you finish

122

ORDER OF
OPERATIONS

1 ---

2 ---

5 ---

6 ---

3 ---

4 ---

COSC 123 – 12

Example

Bouncing Ball Revisited
float speedX = 1, speedY = 2;
float x=20, y=100, r = 20;

void setup(){size(200,200);}

void draw(){
background(0);
moveBall();
checkCollisions();
drawBall();

}

void moveBall(){
x += speedX;
y += speedY;

}

void checkCollisions(){
if(x > width-r || x < r)

speedX = -speedX;
if(y > height-r || y < r)

speedY = -speedY;
}

void drawBall(){
ellipse(x,y,2*r,2*r);

}

float speedX = 1, speedY = 2;
float x=20, y=100, r = 20;

void setup(){size(200,200);}

void draw(){
background(0);

//move ball
x += speedX;
y += speedY;

//detect collisions (edges)
if(x > width-r || x < r)

speedX = -speedX;
if(y > height-r || y < r)

speedY = -speedY;

//draw ball
ellipse(x,y,2*r,2*r);

}

Without user-defined functions WITH user-defined functions

Using
functions

COSC 123 – 13

Variables in Functions
¥ Local variables

¥ Variables declared (created) in a function are local i.e. available
only in that method.

¥ Parameters
¥ As mentioned before, parameters are variables that allow for

passing data into a function when calling it.
¥ Parameters are local variables that the function can use while it is

executing.
¥ Each parameter has a data type.
¥ Functions may have zero parameters or as many as they want.
¥ To call a function with parameters you must pass in the necessary

values (called arguments) for the function to use.
¥ Using parameters makes a function more powerful and useful.

COSC 123 – 14

Functions Notes
¥ When declaring a function, you must put the parenthesis "()"

after the name even if the function has no parameters.
¥ If a function returns nothing, you can just say "return;".

¥ Parameter is the term used for input when viewing from inside
the function (function's perspective). Argument is the term used
for input when viewing from outside the function.

¥ Functions are declared only once, but can be called as many
times as you want.

¥ Execution of the function halts at the return statement and any
value in the statement is passed back to the caller.

¥ You may have multiple return statements in a function, but only
one will ever be executed for a given execution.

COSC 123 – 15

Question

Creating a Function
This function is supposed to take two numbers as input and
return their sum. What is wrong with it?

A. The two numbers are not added together.

B. The result of the addition is not returned back.

C. Only one number to add is passed into the function.

D. The name of the function is not correct.

int addTwoNum(int num1) {
int result = num1 + num2;

}

COSC 123 – 16

Question

Creating a Function (2)
We want to create a function that multiplies two numbers
together. Which of these functions is correct?

A.

B.

C.

D.

multTwoNum(int num1, num2) {
return num1 * num2;

}

int multTwoNum(int num1, int num2, int num3){
return num1 * n2;

}

int multTwoNum(int num1, int num2) {
int result = num1 * num2;

}

int multTwoNum(int num1, int num2) {
return num1 * num2;

}

COSC 123 – 17

Question

Functions
What is the output of this code?

A. nothing

B. error

C. 9

D. 18

int num=9;
void setup() {
int result = doubleNum(num);
print(result);
noLoop();
}
int doubleNum(int n){
return n*2;
}

COSC 123 – 18

Question

Functions
What is the output of this code?

A. 36

B. 18

C. 9

D. error

int num=9;
void draw() {
int result = doubleNum(doubleNum(num));
print(result);
noLoop();
}
int doubleNum(int n){
return n*2;
}

COSC 123 – 19

Question

Functions
What is the output of this code?

A. error

B. 3

C. -3

D. 0

int subtractNum(int a, int b) {
return a-b;
}
void draw() {
int x=5, y=8;
int result = subtractNum(x, y);
print(result + subtractNum(y, x));
noLoop();
}

COSC 123 – 20

Question

Functions
What is the output of this code?

A. oddodd

B. oddeven

C. evenodd

D. Eveneven

E. error

void setup() {
int num = 10;
print(evenOrOdd(11));
print(evenOrOdd(num));

}
String evenOrOdd(int n) {
if (n % 2 == 0)
return "even";

else
return "odd";

}

COSC 123 – 21

Example

Drawing a Spaceship
¥ Let’s say we want to

draw the spaceship in
the figure.

¥ This code would do this
task.

size(200, 200); background(255);
int x = 100, y = 100, size = 64; //location & size
// draw side guns
rectMode(CENTER);
stroke(255,90,90);
strokeWeight(1);
fill(255,0,0);
rect(x-size/3,y+size/2,size/15,size/3);
rect(x+size/3,y+size/2,size/15,size/3);
// draw jet engine
fill(255,180,0);
rect(x,y+size,size/2,size/10);
// draw main body
stroke(0);
fill(0,50,155);
triangle(x,y, x+size/2, y+size, x-size/2, y+size);
fill(0,100,255);
ellipse(x,y+2*size/3,size/3,size/2);

COSC 123 – 22

Example

Drawing Two Spaceships
¥ Now let’s say we want

to draw another
spaceship. You have
two options:
¥ Copy/paste the

code again.
n This works, but it

will be ugly!
¥ Use Functions!!

void draw() {
drawSpaceship(100,100,64);
drawSpaceship(50,50,32);
}
void drawSpaceship(int x, int y, int size) {
// draw side guns
rectMode(CENTER);
stroke(255, 90, 90);
strokeWeight(1);
fill(255, 0, 0);
rect(x-size/3, y+size/2, size/15, size/3);
rect(x+size/3, y+size/2, size/15, size/3);
// draw jet engine
fill(255, 180, 0);
rect(x, y+size, size/2, size/10);
// draw main body
stroke(0);
fill(0, 50, 155);
triangle(x,y,x+size/2,y+size,x-size/2, y+size);
fill(0, 100, 255);
ellipse(x, y+2*size/3, size/3, size/2);
}

COSC 123 – 23

Example

Drawing Many Spaceships
¥ Once you create the function, you can call it as many times as you wish,

and each time you can change the parameters so that new output is
produced. For example, the code below uses the drawSpaceship()
function and produces the figure shown.

void setup(){
size(300,250);
}
void draw() {
background(255);
drawSpaceship(100,100,64);
drawSpaceship(250,40,32);
drawSpaceship(50,50,32);
drawSpaceship(150,80,32);
drawSpaceship(200,100,96);
}
void drawSpaceship(int x,int y,int size){
...
}

End of Tuesday’s Class

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Functions

COSC 123 – 26

Announcements
¥ Bonus Test 3 is this week!

¥ Content: Variables, Images, Conditionals

¥ Reminder of the Labs/Activities 8-11 deadline
¥ Will be due March 28th at 6 PM!
¥ Come see me in my student hours (or make an appointment with

me through Ed Discussion) if this will cause you problems ASAP so
we can come up with an alternate plan

¥ You must ALWAYS submit your pde files in your github repo and
make sure any gifs you want marked are NOT in the `images` or
the `animations` directories!

¥ Final Exam Details

COSC 123 – 27

COSC 123 Final Exam
¥ Check SSC for the official date and time of the Final Exam
¥ There will be a mix of multiple choice questions (similar to

Tests), but a large portion will be coding tasks, earning partial
credit will be possible

¥ The final exam will be:
¥ Cumulative (Weeks 1-13)

¥ Live (2.5 hours), will be invigilated (final details TBD)

¥ Open book, open-notes, open-web but no cheating sites like
Chegg/Course-Hero/Bartleby etc

¥ Using IDEs (particularly PDE) is encouraged!

¥ Combination of PrairieLearn, Gradescope and GitHub

COSC 123 – 28

COSC 123 Final Exam

¥ Thursday Apr 21 at 12:00 (Check SSC to confirm!)

¥ Online and invigilated by Zoom

¥ Time: 2.5 hours

¥ The exam covers all course material as indicated in the
syllabus and during the lectures.

¥ You will NOT be formally tested on Git and Command Line,
but you will need those concepts to do the final exam (i.e.
accept a GitHub Classroom repository)

COSC 123 – 29

Course Withdrawal Deadline is
March 18, 2022

Nice Ideas with Functions

COSC 123 – 31

Remember: Problem Decomposition
¥ Remember that you can use functions to break down your

problem into reusable pieces of code.

float x = 100, y = 100, r = 20;
float speedX = 2, speedY = 3;
void draw() {
moveBall();
bounceBall();
drawElements();

}
void moveBall() {
x += speedX; y += speedY;

}
void bounceBall() {
if (x>width-r ||x<r)

speedX=-speedX;
if (y>height-r||y<r)

speedY=-speedY;
}
void drawElements() {
background(0);
ellipse(x, y, 2*r, 2*r);

}

float x = 100, y = 100, r = 20;
float speedX = 2, speedY = 3;
void draw() {
background(0);

x += speedX; y += speedY;

if (x>width-r ||x<r)
speedX=-speedX;

if (y>height-r||y<r)
speedY=-speedY;

ellipse(x, y, 2*r, 2*r);
}

COSC 123 – 32

IDEA1: Game Loops (Problem Decomposition)

¥ As you saw in the Space Invaders game in the readings, there
is a game-loop that can be used in many games use

¥ The game loop does the following in every frame:
¥ Move game items (also update their other attributes)
¥ Detect collisions
¥ Draw game elements

Note: the order may change depending on your code!

COSC 123 – 33

Space Invader’s Game Loop
¥ As you read in the pre-class readings, the game loop for the

Space Invader game looks like this

void draw(){ //draw() is the game loop
// Erase background.
// Move spaceship based on user input.
// Move enemies.
// Move other game items (bullets).
// Detect collisions between game items (e.g. bullets

and enemies) and update game status accordingly.
// Draw spaceship.
// Draw enemies.
// Draw bullets.

}
https://commons.wikimedia.org/wiki/File
:Space_Invaders_style.png

Example 4

COSC 123 – 34

Space Invader’s Game Loop, cont’d
void draw() {
background(0);

moveSpaceship();
moveEnemies();
moveBullets();

detectCollisions();

drawSpaceship();
drawEnemies();
drawBullets();

}
https://commons.wikimedia.org/wiki/File
:Space_Invaders_style.png

void moveSpaceship(){
...

}

void moveEnemies(){
...

}

void drawBulltes(){
...

}

void moveBullets(){
...

}

...
void detectCollisions(){
...

}

Example 4

COSC 123 – 35

Space Invader’s Game Loop, cont’d

https://commons.wikimedia.org/wiki/File
:Space_Invaders_style.png

Example 4

void draw() {
background(0);
moveSpaceship();
...
detectCollision();
drawElements();

}
void moveSpaceship() {
x += speedX; y += speedY;

}
void bounceBall() {
//for each enemy
// for each bullet
// if(dist(enemy,bullet) < T)
// collision(enemy, bullet)

}
void drawSpaceship() {
ellipse(...);
rect(...);
...

}

COSC 123 – 36

IDEA2: Multiple Scenes
Having multiple scenes in your animation or game is possible as
follows:
1) Create multiple functions, scene0(), scene1(), etc. Each will

“act” as the draw method for the corresponding scene.
2) Create a variable, e.g. int scn, that keeps track of which

scene is currently active.
• For example, when scn=0, then scene 0 is active.

3) Use switch statement within draw() to display the right scene
based on the value of scn.

switch(scn){
case 0: scene0(); break;
case 1: scene1(); break;
...etc

}

COSC 123 – 37

Simple Two-Scene Animation
¥ In this example, we show how to build an animation with two

scenes:
¥ Scene 0: intro screen
¥ Scene 1: bouncing ball

Example

Press S

Press B

COSC 123 – 38

Simple Two-Scene Animation, cont’d
int scn = 0;
float x = 100, y = 100, r = 20;
float speedX = 2, speedY = 3;
void setup() {
size(300, 300);
textSize(18);

}
void draw() {
switch(scn) {
case 0: scene0(); break;
case 1: scene1(); break;
}

}

void scene1() {
moveBall();
bounceBall();
drawElements();

}
void moveBall() {
x += speedX; y += speedY;

}
void bounceBall() {
if (x>width-r ||x<r) speedX=-speedX;
if (y>height-r||y<r) speedY=-speedY;

}
void drawElements() {
background(0);
ellipse(x, y, 2*r, 2*r);
text("Press 'B' to go back",20,290);

}

void scene0() {
background(0, 0, 100); //dark blue
text("This is the story about ..bla bla ..

Bouncing-Ball ... bla bla", 30,30,240,200);
text("Press 'S' to start",150,290);

}

Example

void keyReleased() {
if(scn==0 && (key=='S'||key=='s'))

scn = 1;
if(scn==1 && (key=='B'||key=='b'))

scn = 0;
}

COSC 123 – 39

Medieval Tales Game
Another example of using scenes is in our Medieval Tales game.
The game has five scenes:

¥ The example on the next slide shows how the player
character can move across the two “Game-playing” scenes.
¥ For simplicity, the example uses a ball (instead of the player) that

moves horizontally across two scene.

Home screen Game-playing 1 Game-playing 2 Help scene End-of-game

Example

scn = 0 scn = 1 scn = 2 scn = 3 scn = 4

COSC 123 – 40

Example

Bouncing Ball version 3

¥ Let’s say we have a ball moving horizontally across two scenes:
scene0 and scene1.

¥ The ball starts in scene0, moving to the right towards scene1.

¥ The ball bounce off the right edge of scene1 and the left edge of
scene0

¥ When the ball reaches the edge between the two scenes, the
animation should show the scene to which the ball is heading.

speedX > 0speedX < 0

x is equal to r when
at left edge of scene 0

(x,y)

scene 0

(x,y)

scene 1

x is equal to width-r
at right edge of scene 1

COSC 123 – 41

Example

Bouncing Ball version 3 (Cont’d)

The code shows a ball bouncing off the
edges. For simplicity, the ball moves
only horizontally.

IDEA

¥ The switch statement will choose
which scene to draw.

¥ Within each scene (see next slides),
if statements are used to bounce the
ball off the right edges and to move
across the scenes.

float speedX=3, x=20, y=100, r=20;
int scn = 0; //start in fist scene

void setup(){
size(200,200);
rectMode(CENTER);
fill(0);
strokeWeight(15);

}

void draw(){
switch(scn){
case 0: scene0(); break;
case 1: scene1(); break;

}
}

COSC 123 – 42

Example

Bouncing Ball version 3 (Cont’d)
void scene0(){
//Draw scene elements
background(loadImage("background_0.png"));
text("SCENE 0", width/2, 20);
ellipse(x,y,2*r,2*r);
line(0,50,0, height);

//Move ball and check edges
x += speedX;
if(x < r) // if ball at left edge
speedX = -speedX; // reverse direction

else if(x>width){ // if ball at right edge
scn = 1; // switch to scene 1
x = 0; // put the ball on the left of scene 1

}
}

COSC 123 – 43

Example

Bouncing Ball version 3 (Cont’d)
void scene1(){
//Draw scene elements
background(loadImage("background_1.png"));
text("SCENE 1", width/2, 20);
ellipse(x,y,2*r,2*r);
line(width,50,width, height);

//Move ball and check edges
x += speedX;
if(x >= width-r) // if ball at right edge
speedX = -speedX; // reverse direction

else if(x<0){ // if ball at left edge
scn = 0; // go to scene 0
x = width; // put the ball on the right of scene 0

}
}

COSC 123 – 44

Lecture Activity Task

Tint your Spaceship!
¥ Modify drawSpaceship() function given before so that you can

also control the brightness of the spaceship. For example, the
following code should produce the output given below.
¥ E.g. brightness should be given as a number in the range of 0..1:

0 means extremely dark (black silhouette), 1 means normal colors

¥ How: multiply the brightness value by every color component in
your function, e.g. fill(255) should be changed to
fill(255*brightness).drawSpaceship(20,30,16,0); //tiny spaceship

drawSpaceship(50,50,32,0.4); //small spaceship
drawSpaceship(150,30,48,0.8); //medium spaceship
drawSpaceship(100,100,64,1.0); //big spaceship

COSC 123 – 45

Lecture Activity Task

Draw Your Character with Functions
¥ Update the code you wrote earlier for your character so that the

character is drawn in a function. The parameters should be the
position, the scale, and the body and belt colors. Use this
function to draw 2 or 3 of your character. Use this header:
drawSuperhero(int x,int y, float scale, color c1, color c2);
¥ Example:
drawSuperhero(200,200,2.0,color(19,0,205),color(0,255,255));
drawSuperhero(70,70,0.75,color(190,0,10),color(255,10,100));

HINT: whenever you transform the
coordinates inside a function, it is
better to restore the original
coordinates before leaving the
function. HOW can you do this?

COSC 123 – 46

Lecture Activity Task

Update your game
1. Download the starter code and unzip to your computer.
2. Open any of the three files in Processing.

n You will notice all three files appear in 3 tabs.

3. Run the code (Ctrl+R) and observe the output.
n This is the same “Player Jumping” exercise we did before.

4. Implement the following two requirements
1. REQ1 : go to scene1 tab and use functions to organize your code

(see the REQ comments in scene1).
2. REQ2: add one more scene, named scene0, in a new tab (press

the triangle button beside scene1 tab to create a new tab). The
new scene should be the game’s opening screen with the
message “Hit ‘P’ to play, and ‘E’ to exit. Hit ‘M’ during gameplay to
return to this screen”. You will need to update the keyReleased
function with the following:

if(we are in scene 0 and player hits P) then go to scene 1
if(we are in scene 0 and player hits E) then exit()
if(we are in scene 1 and player hits M) then go to scene 0

https://people.ok.ubc.ca/abdalmoh/teaching/123/Notes/Exercises/123_13_Functions/medieval_withScenes.zip

COSC 123 – 47

Lecture Activity Task

Update your game, Cont’d

Press P

Press M

Press E

EXIT

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Review / Practice

COSC 123 – 49

What You Learned so Far
¥ Primitive shapes, text, and color, coordinates transformation
¥ Active programs

¥ setup(), draw() methods
¥ Event methods (keyPressed, MousePressed, …)
¥ System variables (mouseX, pmouseX, key, keyCode, …)

¥ Built-in functions:
¥ Math, size, noLoop, …
¥ Randomness: random, noise
¥ map, norm, constrain,

¥ Variables and Images
¥ Conditionals

¥ controlling items, buttons, bouncing attributes, gravity

¥ Loops
¥ Functions

¥ Game loops, animations with multiple scenes

COSC 123 – 50

Let’s build a simple game
¥ You have exactly

¥ 1 spaceship
¥ 1 enemy
¥ 1 bullet at any time

¥ Spaceship moves horizontally with
the mouse, but it doesn’t move
vertically at all.

¥ Enemy moves in a sine wave path
¥ Two full cycles

¥ You can shoot one bullet by
mouse click – you can’t shoot
another one until bullet goes out
of screen (top)

¥ If bullet hits enemy, score++.

COSC 123 – 51

Basic Idea
¥ We shall use our game loop with functions to

Move/update items
Detect collisions
Draw items

¥ Each item will have its own attributes: x,y, size
¥ The bullet will always have the same x,y of the spaceship as

long as it is not fired. Once fired, it will move upwards while
keeping its x position fixed
¥ We will need one more attribute (boolean) to record the state of the

bullet, i.e. whether it is active or not.

¥ We will use the dist() function for collision detection.

float ship_x = 0, ship_y = 375;
float bullet_x = 0, bullet_y = 375; boolean bullet_active = false;
float enemy_x = 200, enemy_y = 0, enemy_size = 40, bullet_len = 10;
int score = 0;
void setup(){size(400,400); stroke(255); strokeWeight(3);}
void draw(){
background(100);
text("Score: " + score, 20,20);
//game loop
moveSpaceship();
moveBullet();
moveEnemey();
detectCollisions();
displaySpaceship();
displayBullet();
displayEnemy();

}
void moveSpaceship(){
ship_x = mouseX;

}
void moveEnemey(){
enemy_y+= 0.3;
enemy_x = 200+100*sin(map(enemy_y, 0, height, 0, 8*PI));

}

Change enemy_y from a distance to

an angle represented in terms of PI

void moveBullet(){
if(bullet_active){
bullet_y-=6;
if(bullet_y<0) bullet_active = false;

}else{
bullet_x = ship_x;
bullet_y = ship_y;

}
}
void displaySpaceship(){
triangle(ship_x,ship_y,ship_x+10,ship_y+20,ship_x-10,ship_y+20);

}
void displayBullet(){
line(bullet_x, bullet_y, bullet_x, bullet_y+ bullet_len);

}
void displayEnemy(){
ellipse(enemy_x, enemy_y, enemy_size, enemy_size);

}

void detectCollisions(){
if(dist(bullet_x,bullet_y,enemy_x,enemy_y)<enemy_size/2){ //not accurate

bullet_active = false;
score++;

}
}

void mouseReleased(){
bullet_active = true;

}

COSC 123 – 54

Better way to organize code – Use Tabs
¥ Put all the attributes and methods for each game item in one tab

COSC 123 – 55

Lecture Activity Task

Be Creative…
Expand the code from the previous slide to include any one of the
following items. If you do more than one, that’s even better!

¥ Improve game items (spaceships and bullet)
n e.g. replace with images, use better vector designs (e.g. enemy should

be more than just a moving dull circle), etc.
¥ Change the code so that the enemy follows one of three predefined

paths every time it enters the window from the top. The chosen
path should be selected randomly.

n Define 3 paths: sinusoidal, noise(), and diagonal. Each time the enemy
enters the screen, it randomly selects one of the 3 paths and follows it
until either it exits the screen (from the bottom) or it is shot.

¥ Allow your spaceship to shoot another bullet (total of 2 bullets).
n You cannot use arrays or OOP.

COSC 123 – 56

An Even Better way?
¥ The functions and attributes for each item are interleaved. This

would make the code very hard to work with when we have
many game items.

¥ Also, it is currently very tedious to name the variables and
functions for each item in the game. This gets worse as we have
more and more game items.

¥ Is there a better way to build this game??
¥ Yes, by “grouping” all functions and attributes of each item

under a code block, and then giving them simpler names.
¥ This can be done using Object Oriented Programming or

n We will discuss this next week!

